1. BASIC PRINCIPLES

1.1 INTRODUCTION AND PHILOSOPHY

An examination of the origins of any scientific field, be it astronomy or anatomy, physics or
psychology, indicates that the discipline began with a collection of observations and results of experiments. It
is natural, then, that the first steps in quantifying the subject should involve the collection, presentation, and
interpretation of data. Consequently, the study of statistics has played a dominant role in the mathematical
preparation of students working in the quantitative areas of the social and life sciences. A statistical
treatment of data may be quite elementary, involving little more than listing, sorting, and a few
straightforward computations. It may also be quite sophisticated, involving substantial mathematical ideas
and delicate problems of experimental design. Once enough data have been collected and adequately
analyzed, the researcher tries to identify a process which accounts for the results. It is this activity, the
mental or pencil-and-paper creation of a theoretical system that is the topic of this book. In the scientific
literature this activity is commonly known as theory construction and analysis. We shall refer to it as the
construction, development, and study of mathematical models. As we shall sec as our study progresses, the
process may involve using familiar ideas in straightforward ways, it may involve using these ideas in
unexpected ways, or it may involve generating new concepts and ideas.

The original problem almost always arises in the real world, sometimes in the relatively controlled
conditions of a laboratory and sometimes in the much less completely understood environment of everyday
life. For example, a psychologist observes certain types of behavior in rats running in a maze, a geneticist
notes the results of a hybridization experiment, or an economist records the volume of international trade
under a specific tariff policy, and then each conjectures certain reasons for the observations. These
conjectures may be based completely on intuition, but more often they are the result of detailed study,
experience, and the recognition of similarities between the current situation and other situations which are
better understood. This close study of the system, which for the experimenter usually precedes the forming
of conjectures, is really the first step in model building. Much of this initial work must be done by a
researcher who is familiar with the origin of the problem and the basic biology, psychology, or whatever else
is involved.

The next step (after the recognition of the problem and its initial study) is an attempt to make the
problem as precise as possible. By this we mean arriving at a clear and definite understanding of the words

oncepts to be used. This process typically involves making certain idealizations and approximations,

One fmportant aspect of this step is the attempt to identify and select those concepts to be considered as

basic in the study. The purpose here is to eliminate unnecessary information and to simplify that which is



retained as much as possible. For example, with regard to a psychologist studying rats in a maze, the
experimenter may decide that it makes no difference that all the rats are gray or that the maze has 17
compartments. On the other hand, it may be significant that all the rats are siblings or that one portion of
the maze is illuminated more brightly than another. This step of identification, approximation, and
idealization will be referred to as constructing a real model. This terminology is intended to reflect the fact
that the context is still that of real things (animals, apparatus, etc.) but that the situation may no longer be
completely realistic. Returning again to the maze, the psychologist may construct a real model which
contains rats and compartments, but with the restriction that a rat is always in exactly one compartment.
This restriction involves the idealization that rats move instantancously from compartment to compartment
and are never half in one compartment and half in another. Also, he might construct a model in such a way
that the rat moves from one compartment to another regularly in time, an approximation which may or may
not be appropriate depending on just what behavior is to be investigated.

The third step (after study and formation of a real model) is usually much less well defined and
frequently involves a high degree of creativity. One looks at the real model and attempts to identify the
operative processes at work. The goal is the expression of the entire situation in symbolic terms. Thus the
real model becomes a mathematical model in which the real quantities and processes are replaced lzz
symbols and mathematical oﬁérr-a{ibns. "Usually, much of the value of the study hinges on this sicp because
ﬁmmmmhc real world and the mathematical world is unlikely to lead to
useful results. It should be emphasized that the construction of a mathematical model is highly non-unique.
There may be several mathematical models for the same real situation. In such circumstances, it may
happen that one of the models can be shown to be distinctly better than any of the others as a means of
accounting for observations. In fact, it often happens that an elaborate experiment is designed for the
purpose of showing that one model is truly better than others. Naturally, if this can be shown, then one
usually chooses to use the best model. However, it may also happen that cach of a number of models proves
to be useful in the study - each model contributing to the understanding of some aspects of the situation, but
no one model adequately accounting for all facets of the problem under consideration. Thus there may not
be a best model, and the one to be used will depend on the precise questions to be studied.

After the problem has been transformed into symbolic terms, the resulting mathematical system is
studied using appropriate mathematical ideas and techniques. WEWL
theorems, from a mathematical point of view, and predictions, from the empirical point of view. The
motivation for the mathematical study is not to produce new mathematics, i.e., new abstract ideas or new

theorems, although this may happen, but more importantly to produce new information about the situation

being studied. In fact, it is likely that such information can be obtained by using well-known mathematical

concepts and techniques. The important contribution of the study may well be the recognition of the
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relationship between known mathematical results and the situation being studied.

The final step in the model-building process is the comparison of the results predicted on the basis
of the mathematical work with the real world. The happiest situation is that everything actually observed is
accounted for by the conclusions of the mathematical study and that other predictions are subsequently
verified by experiment. Such agreement is not frequently observed, at least not on the first attempt. A much
more typical situation would be that the set of conclusions of the mathematical theory contains some which
seem to agree and some which seem to disagree with the outcomes of experiments. In such a case one has
to examine every step of the process again. Has there been a significant omission in the step from the real
world to the real model? Does the mathematical model reflect all the important aspects of the real model,
and does it avoid introducing extraneous behavior not observed in the real world? Is the mathematical work
free from error? It usually happens that the model-building process proceeds through several iterations,
each a refinement of the preceding, until finally an acceptable one is found. Pictorially, we can represent this
process as in Fig. 1-1. The solid lines in Fig. 1-1 indicate the process of building, developing, and testing a
mathematical model as we have outlined it above. The dashed line is used to indicate an abbreviated version

of this process
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which is often used in practice. The shortened version is particularly common in the social and life sciences
where mathematization of the concepts may be difficult. In either case, the steps in this process may be
exceedingly complex and there may be complicated interactions between them. However, for the purpose of
studying the model-building process, such an oversimplification is quite useful. We also note that this
distinction between real models and mathematical models is somewhat artificial. It is a convenient way to

represent a basic part of the process, but in many cases it is very difficult to decide where the real madel



ends and the mathematical model begins. In general, research workers often do not worry about drawing \
such a distinction. Hence in practice one frequently finds that predictions and conclusions are based on a \
sort of hybrid model, part real and part mathematical, with no clear distinction between the two. There is, =5
however, some danger in this practice. While it may well be appropriate to work with the real model in
some cases and the mathematical model in others, one should always keep in mind the setting that is being
used. At best, a failure to distinguish between a real model and a mathematical model is confusing; at worst,
it may lead directly to incorrect conclusions. Complications may arise because problems in the social,
biological, and behavioral sciences often involve concepts, issues, and conditions which are very difficult to
quantify. Hence essential aspects of the problem may be lost in the transition from the real model to the
mathematical model. In such cases conclusions based on the mathematical model may well not be
conclusions about the real world or the real model. Thus there are circumstances in which it is crucial to
distinguish the model to which a conclusion refers. ‘
Many skills are needed for successful model building. In particular the ability to recognize patterns
and general structures is just as important in model building as it is in the study of pure :nathematics. It is
not surprising that the same type of mathematics is involved in studying the servicing of automobiles at a
turnpike tollbooth and customers in a barbershop. It is less obvious that, from a mathematical point of view,
these two situations have much in common with certain models for the propagation of a rumor or epidemic.
However, as we shall see later (Chapter 9), very similar mathematical models will serve for both.
One of the first features which should be determined about a situation is whether it is most

appropriately modeled in deterministic or stochastic terms. A model is said to be deterministic if it is based

on the assumption that given sufficient information at one instant in time or at one stage, then the entire
future behavior of the system being studied can be predi;ted precisely. Thus one might choose to model the
growth of a certain population in deterministic terms. The hypothesis, then, is that if we know the way the
population grows and if its size is known at one instant in time, then the size of the population for all future
times can be determined exactly. On the other hand, a model is stochastic if it incorporates probabilistic
behavior. For these models the predictions are such that no'matter how much one knows about the system
at a given time, it is impossible to determine with absolute certainty the nature of the system for future
times. For example, suppose that we are concerned with a concept acquisition experiment in which an
unbiased subject is provided stimuli intended to convey, in some explicitly defined manner, the concepts
roundness, redness, and fourness. Then one might choose to construct a model in which no matter how
much we know about how the subjects learned the concepts of roundness and redness does, we cannot
determine with absolute precision how quickly they will learn the concept of fourness. The strongest
statement that can be made in such situations is a probabilistic one such as, "The subject will learn the

concept of fourness with fewer than ten presentations of a stimulus with probability 0.8." Such a model



might appear very appropriate in light of the variations shown in experimental results. Many of the most
useful models in the social and life sciences are of this type, that is, models whose mathematical description
involves chance and uncertainty. Of course, stochastic models have been used successfully in the physical
sciences, e.g., statistical mechanics, and deterministic models have been extensively used in the life and social
sciences, e.g., Richardson models for arms races and Lotka models for interacting populations. In some
instances, one can construct both types of models for the same system, and in some of these cases a
comparison serves to check the validity of both (see Chapter 8). The decision as to which type of model
should be constructed depends on many factors and is ultimately simply a choice of the investigator.
Frequently a deterministic model is taken as a first approximation in a situation when a stochastic model
appears more appropriate. For example, when formulated in terms of a real model, a situation involving
growth may appear to be best modeled in stochastic terms. However, a stochastic mathematical model may
present technical difficulties which are either impossible to overcome or prohibitively time-consuming. It
may be desirable to consider a deterministic mathematical model as a first approximation and to compare
the conclusions based on such approximations with observations. In general, however, one should not
assume that predictions based on one type of model are necessarily better (or worse) than those based on
the other type. The relative merits of the two types of models vary from one situation to another.

Some situations lend themselves to descriptions in terms of continuous quantities, e.g., space or time,
and others are just as naturally phrased in discrete terms, e.g., the number of automobiles passing a toll
booth in an hour. Even situations which initially appear to be described in terms of a continuous parameter
may upon closer examination admit a natural discretization. For instance, a biological population may be
viewed as evolving through time. However, if observations are made periodically, then a description of the
system in terms of discrete time may be appropriate. There is frequently an option to phrase a situation in
one form or the other, and the mathematics is usually quite different in the two cases. For example,
difference equations may replace differential equations in a discrete model of a biological system. If
computer implemented computations are involved, a discrete version will be required at that step.

If a model is to belof practical use, then one must have a means of obtaining results that can be
tested or compared with the real world. Consequently, the model builder must keep in mind the necessity
for developing realistic computational schemes or algorithms for computing the quantities arising in the study
of the mathematical model. There are some particularly important algorithms associated with the topics
discussed in this book, and we shall give an introduction to some of them. Most algorithms of practical
significance for real problems require computer assistance with the calculations. Another matter related to
checking the model against reality is parameter estimation. Many of the models which are considered here
lead to mathematical relations involving a parameter. Tracing this parameter back to the real world, one

may find that it is related to a learning rate, a probability of a birth, an asset ratio, etc. Thus, in comparing



the results of the mathematical study with reality, it may be necessary to give numerical values to these
parameters. In general, the estimation of parameters is a real and delicate problem for which each discipline
has its own special and refined techniques. Because of the special nature and limited applicability of many of
these ideas, and not because of any lack of importance, we shall consider them only briefly (Chapter 10).

The reader will rapidly realize that some of the best models for certain types of problems are simply
intractable mathematically. That is, the model leads to mathematical questions which either have no known
solution or no solutions which can be reliably and reasonably computed. In such situations, one often turns
to computer simulation for assistance. Again the precise nature of the program depends on the specific
problem, and we content ourselves here with some examples (Chapter 10).

To conclude this introductory section, we remark that the use of mathematical techniques, in
particular the use of mathematical models, is only one method which can be applied to questions arising in
the sciences. As noted earlier, many important aspects of a situation in the social or life sciences may be
very difficult to quantify. In such cases the use of mathematical models may be of limited utility, and it may
be better to study the situation in the context of a real model by nonmathematical means. Indeed, one might
legitimately ask what basis we have for expecting mathematical methods to be effective. Our hopes rest on
the proven effectiveness of mathematics in the physical sciences and on scattered but significant successes in
the social and life sciences. For example, probabilistic models in genetics (mathematical systems which yield
Mendel’s Laws as conclusions), logistic models for certain laboratory populations, input-output models in
economics (for which Leontief received the 1973 Nobel Prize in economics). However, most of the
credibility of mathematical models rests on their unusual effectiveness in the physical sciences and
engineering. One of the most impressive examples, indeed perhaps the most impressive example, of the
fruitful use of mathematical models occurs in the study of planetary motion. This is also a fine example of
the evolution of a model through several stages. Since this example had such a profound influence on

science, it is worthwhile to consider it briefly.

12 A CLASSIC EXAMPLE

The creation of a coherent system to explain and predict the apparent motions of the planets and
stars as viewed from the earth is certainly a significant triumph of human intellect. That the problem had
attracted attention from the most ancient times and that the theory is still undergoing modification in this
century give an indication of the enormous time and energy that have gone into its study.

Early views of a fixed and flat earth covered by a spherical cclestial dome were studied by the
Greeks, wha devised a real model in the fourth century B.C. which accounted at least approximately for the

rough observations then available. The earth was viewed as fixed with a sphere containing the fixed stars
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rotating about it. The "seven wanderers" (the sun, moon, and five plancts) moved in between. The Greeks’
concern was to construct combinations of uniform circular motions centered in the earth by which the
movements of the seven wanderers among the stars could be represented. Each body was moved by a set of
interconnecting rotating spherical shells. This system was adopted by Aristotle, who introduced 55 shells to
account for observed motions. This real model based on geometry was capable of reproducing the apparent
motions, at least to a degree consistent with the accuracy of the contemporary observations. However, since
it kept each planet a fixed distance from the earth, it could not account for the varying brightness of the
planets as they moved.

This system was modified by Ptolemy, the last great astronomer at the famous observatory at
Alexandria, in the second century A.D. In its simplest form the Ptolemaic system can be described as
follows: Each planet moved in a small circle (epicycle) in the period of its actual motion through the sky,
while simultaneously the center of this circle moved around the earth on a larger circle. The basic model
was capable of repeated modification to account for new observations, and such modifications in fact took
place. The result was that by the thirteenth century the model was extremely complicated, 40-60 epicycles
for each planet, without commensurate effectiveness.

By the beginning of the sixteenth century there was widespread dissatisfaction with the Ptolemaic
system. Difficulties resulting from more numerous and more refined observations forced repeated and
increasingly elaborate revision of the epicycles on which the Ptolemaic system was based. As early as the
third century B.C. certain Greek philosophers had proposed the idea of a moving earth, and as the
difficulties with the Ptolemaic point of view increased, this alternative appeared more and more attractive.
Thus, in the first part of the sixteenth century the Polish astronomer Copernicus proposed a heliocentric
(sun-centered) theory in which the earth, among the other planets, revolved about the sun. However, he
retained the assumption of uniform circular motion - an assumption with a purely philosophical basis - and
consequently he was forced to continue the use of epicycles to account for the variation in apparent velocity
and brightness of the planets from the earth.

The next step, and a very significant one, was taken by Johannes Kepler. During the years 1576-
1596 a Swedish astronomer, Tycho Brahe, had collected masses of observational data on the motion of the
slanets. Kepler inherited Brahe’s records and undertook to modify Copernican theory to fit these
observations. He was particularly bothered by the orbit of Mars, whose large eccentricity made it very
difficult to fit into circular orbit-epicycle theory. He was eventually led to make a very creative step, a
complete break with the circular orbit hypothesis. He posed as a model for the motions of the planets the

following three "laws":

1. The planets revolve around the sun in elliptical orbits with the sun at one focus (1609).



2 The radius vector from the sun to the planet sweeps out equal areas in equal times (1609).
3. The squares of the periods of revolution of any two plancts are in the same ratio as the

cubes of their mean distances to the sun (1619).

These laws are simply statements of observed facts. Nevertheless, they are perceptive and useful formulations
of these observations. In addition to discovering these laws, Kepler also attempted to identify a physical
mechanism for the motion of the planets. He hypothesized a sort of force emanating from the sun which
influenced the planets. This model described very well the accumulated observations and set the stage for
the next refinement, due to Isaac Newton.

All models developed up to the middle of the seventeenth century involved geometrical
representations with minimal physical interpretation. The fundamental universal law of gravitation provides
at once a physical interpretation and a concise and elegant mathematical model for the motion of the
planets. Indeed, this law, when combined with the laws of motion, provides a description of the motion of all
material particles. The law asserts that every material particle attracts every other material particle with a
force which is directly proportional to the product of the masses and inversely proportional to the square of
the distance between them. In this framework the motion of a planet could be determined by first
considering the system consisting only of the plant and the sun. The latter problem involves only two bodies
and is easy to solve. The resulting predictions, the three laws of Kepler, are good first approximations since
the sun is the dominant mass in the solar system and the planets are widely separated. However, the law of
gravitation asserts that each planet is, in fact, subject to forces due to each of the other planets, and these
forces result in perturbations in the predicted elliptical orbits. The mathematical laws proposed by Newton
provide such an accurate mathematical model for planetary motion that they led to the discovery of new
planets. One could examine the orbit of a specific planet and take into account the influence of all the other
known planets on this orbit. If discrepancies were observed between the predictions and observations, then
one could infer that these discrepancies were due to another planet, and estimates could be obtained on its
size and location. The planets Uranus, Neptune, and Pluto were actually discovered in this manner.
However, even this remarkable model does not account for all the observations made of the planets. Early
in this century small perturbations'in the orbit of Mercury, unexplainable in Newtonian terms, provided some
motivation for the development of the theory of relativity. The relativistic modification of Newtonian
mechanics apparently accounts for these observations. Nevertheless, one should not view this model as
ultimate, but rather as the best available at the present time.

The laws of Newton, viewed as a mathematical model, have provided an extremely effective tool to
the physical sciences. The concepts of force, mass velocity, etc., can be made quite precise and the model

can be studied from a very abstract point of view. Although the social and life sciences do not yet have their



equivalents of Newton’s laws, the utility of mathematical models in the physical sciences gives hope that their

use may contribute to the development of other sciences as well.

13 AXIOM SYSTEMS AND MODELS

In the preceding sections we have surveyed how we intend to use mathematical models to study
situations arising outside mathematics, and we considered one example where the use of mathematical
models has been particularly rewarding. It is time now for us to begin to make the concept of a model more
precise. Since, as we shall see below, a mathematical model can be viewed as an axiom system, it is
appropriate to begin with this topic. The following development has been greatly influenced by R.L. Wilder
and his book [W].

13.1 Axioms

Since the use of the word axiom has changed over the years, we begin our discussion of axioms by
contrasting the current use of this term with an earlier use. At one time, for example, with Euclid and other
Greek mathematicians, the term axiom meant a w It was a universal statement which was
obvious to and undebatable by all. An example of such a statement is the proposition "Equals added to
equals yield equals.” In addition to axioms, mathematicians of the day were also concerned with postulates.
These were statements of a more specific character, and they presumably expressed "true facts” about a
particular subject, such as geometry. The statement "Through two distinct points there exists one and only
one line" qualifies as a postulate. Thus the postulates of geometry use terms such as point and line, which
are spcc1al to geometry and which are not used in areas such as arithmetic. This separation of basic truths
into axioms and postulatcs has a long history. Euchid uscd it in his famous Elements, calling the axioms
"common notions."

The original use of the words axiom and postulate remained relatively unchanged for almost 2000
years. In fact, it is really only in mathematics itself that a second meaning has arisen. In day-to-day
conversation one still hears "It is axiomatic," the meaning being that the statement under discussion is a
universal truth. In mathematics, however, a change in the meaning of the term axiom (and likewise of the
related term postulate) began during the period which saw the development of non-Euclidean geometries.
Without going into detail, we simply point out that a number of geometries were developed in which Euclid’ B
ﬁfth postulate failed to be true. (The fifth postulate essentially said that given a line and a point not on the
lme, there exists one and only one line through this point and parallel to the given line. Gauss, Lobachevski,
and Bolyai all used sets of axioms in which this statement is contradicted while all other Euclidean axioms

are true.) The development of these geometries demonstrated the fallacy of the carlier belief that the fifth



